
Dexterous Teleoperation of 20-DoF ByteDexter Hand
via Human Motion Retargeting

ByteDance Seed

Full author list in Contributions

Abstract

Replicating human-level dexterity remains a fundamental robotics challenge, requiring integrated
solutions from mechatronic design to the control of high degree-of-freedom (DoF) robotic hands.
While imitation learning shows promise in transferring human dexterity to robots, the efficacy of
trained policies relies on the quality of human demonstration data. We bridge this gap with a hand-
arm teleoperation system featuring: (1) a 20-DoF linkage-driven anthropomorphic robotic hand for
biomimetic dexterity, and (2) an optimization-based motion retargeting for real-time, high-fidelity
reproduction of intricate human hand motions and seamless hand–arm coordination. We validate
the system via extensive empirical evaluations, including dexterous in-hand manipulation tasks
and a long-horizon task requiring the organization of a cluttered makeup table randomly populated
with nine objects. Experimental results demonstrate its intuitive teleoperation interface with
real-time control and the ability to generate high-quality demonstration data. Please refer to the
accompanying video for further details.
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1 Introduction

As robots transition from structured settings to cluttered, human-centered environments to assist with
everyday household tasks, versatile and dexterous manipulation has become critical for widespread, real-world
deployment. One promising path to bridge this capability gap for general-purpose robots is to develop
anthropomorphic robotic hands that mimic human dexterity through biomimetic design and control [5, 17].
Developing such systems is a multidisciplinary endeavor that requires the seamless integration of compact,
high-degree-of-freedom (DoF) mechanical systems, efficient power-transmission mechanisms, advanced sensing,
and precise motor control. Furthermore, achieving human-level dexterity requires control policies capable of
coordinating over 20 DoFs to handle complex interactions with objects of diverse shape, material, and mass.

Linkage-driven mechanisms, which transmit motion through cascaded rigid links [9], offer distinct advantages
for compact anthropomorphic hands: durability, ease of maintenance, and actuator integration within the palm.
Building on these principles, we present ByteDexter, a 20-DoF linkage-driven anthropomorphic hand featuring:
(1) a novel thumb mechanism with three actuators driving four DoFs (abduction–adduction, flexion–extension
at the metacarpophalangeal (MCP) joint, flexion–extension at the proximal interphalangeal (PIP) joint,
and flexion–extension at the passively coupled distal interphalangeal (DIP) joint), (2) a microsecond-level
transmission kinematics solver for real-time control, and (3) a parallel–serial finger topology adapted from [10],
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Figure 1 Our hand-arm teleoperation system achieves dexterous in-hand manipulation, including multi-object grasping,
rotation, and regrasping. It also successfully manages grasping of various cosmetic items during a long-horizon
cluttered-table organization task.

providing two actuated, coupled DoFs at the MCP joint, one at the PIP joint, and one underactuated DoF at
the DIP joint. At a compact form factor (255×118×77 mm3; 1.3 Kg), ByteDexter prioritizes compactness
without sacrificing dexterity.

Controlling such high-DoF robotic hands remains challenging. Teleoperation offers a promising path by
leveraging human spatial–temporal reasoning to guide robots while generating demonstration data for imitation
learning. However, existing systems struggle with kinematic mismatches between human and robotic hands,
leading to cognitive operator burden and tedious, error-prone task execution. To address this, we propose an
optimization-based motion retargeting framework that minimizes keypoint discrepancies between human and
robotic hands, ensuring preserving intentional motions while suppressing involuntary ones that risk collisions
or hardware damage.

The contributions of this work include: (1) a 20-DoF linkage-driven hand with a novel thumb mechanics and
real-time transmission kinematics solver, (2) a human hand motion retargeting method bridging human-robot
kinematic differences for high-fidelity teleoperation, and (3) an integrated hand-arm system enabling dexterous
manipulation and seamless coordination across 27 DoFs (20 hand + 7 arm).

We validate the system in a long-horizon teleoperation task: organizing a cluttered makeup table populated
with nine cosmetic items. The system demonstrates robust performance in continuous grasping and ma-
nipulation, rapid repositioning to recover from incidental slippage, and execution of in-hand manipulation
primitives—including multi-object grasping, rotation and regrasping—achieving human-like dexterity in
real-world scenarios.

2 Related Work

High-DoF Anthropomorphic Robot Hand Robotic hands typically employ one of three transmission paradigms:
(i) motor-direct-driven actuation [2, 13, 21], (ii) tendon-driven architectures [12, 20, 26], and (iii) linkage-
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driven mechanisms [4, 10]. Motor-direct-driven mechanism simplifies transmission but ties finger size to
actuator dimensions, limiting miniaturization. Tendon-driven hands achieve close biomimicry; however, their
reliance on elongated forearms to accommodate tendons, pulleys, and actuators complicates integration with
robotic arms, while cable wear necessitates frequent maintenance. Linkage-driven mechanisms prioritize
compactness and robustness but face workspace and kinematic complexity tradeoffs. For example, some
linkage-based hands adopt simplified three-finger gripper layouts to accommodate cascaded links within
constrained palm space [8, 11], while the commercial Schunk SVH hand [19] sacrifices dexterity by reducing
DoFs per finger to prioritize industrial robustness. Kim et al. advanced linkage-driven dexterity with a modular
four-DoF, three-actuator finger design, replicated across five digits to create a 20-DoF anthropomorphic
hand [10]. However, their inverse-kinematics derivation relies on frame-specific trigonometric expansions with
numerous intermediate variables, and the absence of an explicit forward-kinematics analysis limits its broader
applicability.

Robot Hand Teleoperation Vision-based methods, such as MediaPipe (RGB cameras) [14, 25] and UltraLeap
(infrared cameras) [3], enable markerless tracking of 21 anatomical hand landmarks in real time. However, these
approaches remain limited by occlusions, variable lighting, and constrained operational volumes within camera
fields of view. While multi-camera setups [6] improve tracking accuracy, they introduce logistical complexity.
Sensorized gloves bypass these issues by directly measuring joint angles [23] or fingertip poses [7, 15], but
calibration overhead and operator discomfort persist. Despite these tradeoffs, gloves have enabled reliable
teleoperation of high-DoF hands like the Allegro and LEAP [16, 22].

Mapping human poses to robotic joint commands remains challenging due to anatomical mismatches,
particularly in thumb kinematics and DoF disparities. Direct one-to-one angle mapping often fails in
contact-rich tasks, as misaligned fingers risk collisions or unstable grasps. Recent work increasingly adopts
object-centric retargeting to reconcile these differences. One class of methods solves fingertip-level inverse
kinematics in the wrist frame [22, 24], using empirical scaling to account for hand-size differences. Other
works [6, 16] formulate it as a constrained-optimization problem that minimizes vector discrepancies between
corresponding human and robot keypoints [6, 16]. Yet these methods struggle to resolve human-robot
kinematic differences, compromising teleoperation fidelity for intricate human hand motions.

3 Robotic Hand-Arm Teleoperation System

3.1 System Overview

The hand-arm teleoperation system is illustrated in Figure 2. The teleoperation interface comprises a Meta
Quest 3 headset to track wrist poses and a Manus Quantum Metaglove for hand motions. The Quest controller
is mounted to Manus glove’s back via a custom holder to ensure synchronous tracking of wrist and finger
movements. This setup delivers an intuitive, natural interface that enhances hand–arm coordination during
teleoperation. On the robotic side, the ByteDexter anthropomorphic hand is mounted to a Franka Research 3
(FR3) arm, with its wrist–fingertip axis aligned to the arm’s seventh joint. The operators’ wrist poses from
the Quest headset are mapped directly to the FR3 end-effector, while hand motions from the Manus Glove
are retargeted into joint position commands for the ByteDexter hand.

3.2 Anthropomorphic Hand System

ByteDexter’s four long fingers (Figure 3a) adopt the parallel–serial topology of [10], but this design proves
unsuitable for the thumb. Two DoFs at the MCP joint are coupled by the parallel linkage. As MCP flexion
increases, abduction/adduction range diminishes progressively—reaching zero in full flexion. Additionally,
implementing thumb abduction/adduction with two actuators mounted perpendicular to the palm unavoidably
thickens the palm profile, compromising compactness. To address these limitations, we developed a thumb
kinematic structure (Figure 3b) that achieves decoupled, human-like thumb mobility for advanced grasping
and manipulation. Figure 3c demonstrates the motion range of the proposed thumb topology, allowing
full-range MCP and PIP flexion across the thumb’s MCP entire abduction (-4◦ to 90◦) span.

Alongside ByteDexter’s hardware development, we also present a systematic kinematic analysis of the linkage-
driven transmission system by formulating both forward and inverse kinematics as sets of constrained nonlinear
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Figure 2 An overview of the proposed hand-arm teleoperation system. The teleoperation interface consists of a Meta
Quest 3 and a Manus Quantum Metaglove to track wrist and hand poses simuatenously, and the robotic hand-arm
system includes a Franka FR3 arm and the ByteDexter hand.

equations expressed through explicit frame-to-frame transformations (see Supplementary for full derivation).
Solving these equations with the Ceres Solver [1] yields microsecond-level computation times, fast enough to
support a 100 Hz control loop for all 15 DoAs. We developed a C++ API that leverages multi-threading
for efficient bidirectional communication between the host computer and the onboard controller, computing
motor position commands from joint-space commands, and joint states from motor feedback. As joint states
are updated each control cycle, we implement a joint-position controller that dynamically adjusts the limit of
one DoF at every MCP joint as a function of the other DoF’s position. This ensures that only feasible joint
position commands are translated to motor positions and forwarded to the low-level motor drivers.

3.3 Hand Motion Retargeting

Manus Gloves use absolute position sensor measurements to track fingertip poses and then estimate joint poses
based on human hand models. These sensors are sampled at 120 Hz, and the SDK provides 25 landmarks’
poses per glove. We retarget human hand pose data obtained from the Manus Glove into joint position
references of the ByteDexter hand by solving an optimization problem that minimizes the difference between
corresponding keyvectors in the robotic and human hand.

Figure 4 Hand keypoint vectors.

A keyvector is the 3D vector between a pair of key
points, pointing from the origin of one coordinate
frame to the other, expressed in the robot hand’s
base frame. The finger design of ByteDexter (from
the MCP joint to the fingertip, Figure 3a) adopts
anatomically proportional dimensions scaled to hu-
man finger lengths. However, the palm size is
constrained to prioritize functional integration of
motors, embedded boards, and leadscrews, result-
ing in a non-anthropomorphic structure that in-
troduces morphological discrepancies with human
palm anatomy. To address this non-anatomical
factor, our approach diverges from prior methods
using fingertip-to-wrist keyvectors; instead, we com-
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(a) (b) (c)

Figure 3 The ByteDexter hand system illustration, showing (a) robotic finger with 2-DoF MCP joint, 1-DoF PIP
joint, along with a passively actuated 1-DoF DIP joint, (b) the thumb’s kinematic structure, and (c) ByteDexter hand
with thumb motion from zero abduction to its full range.

pute keyvectors from each fingertip to its own MCP joint. For clarity, Figure 4 shows only the index-finger
keyvectors: from the MCP joint to the fingertip, from the fingertip to the thumb tip, from the PIP joint to
the PIP joints of the middle and ring fingers, and from PIP joint to the pinky’s DIP joint (reflecting the
pinky’s shorter length). Iterating this process from the thumb to pinky and eliminating duplicates results in 15
unique keyvectors. Incorporating these keyvectors into the optimization captures the majority of the grasping
types: for pinch grasping, minimizing inter-finger distances (e.g., thumb-index, adjacent fingers) aligns robotic
and human hand poses to reduce operator strain, whereas for power grasping, preserving fingertip-to-palm
distances are prioritized.

Hand motion retargeting is formulated as the following optimization problem, minimizing the differences
between human hand keyvectors and those on the robotic hand:

min
qt

N∑
i=0

w(di)ri(qt)− f(di)v̂i,t
2
+ λqt − qt−1

2,

s.t. ql ≤ qt ≤ qu .

(1)

where qt is the joint position vector of the robotic hand, ri(qt) represents the ith keyvector calculated using
forward kinematics on the robotic hand. Furthermore, di = vi,t and v̂i,t =

vi,t

vi,t
, vi,t is the ith keyvector on the

operator’s hand. w(di) is the weight function of di, defined as

w(di) =


1, di > ϵ

200, di ≤ ϵ ∧ vi,t ∈ S1

400, di ≤ ϵ ∧ vi,t ∈ S2

,

and f(di) defines a distance conditioned on di:

f(di) =


βidi, di > ϵ

η1, di ≤ ϵ ∧ vi,t ∈ S1

η2, di ≤ ϵ ∧ vi,t ∈ S2

,
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where βi ∈ R3 is the scaling factor for the ith keyvector, and η1 forces closing the distance between a finger
and the thumb, while η2 forces a separation distance between two fingers to avoid inter-finger collisions. S1

denotes the set of vectors that originate from a finger (index, middle, ring, pinky) and point to the thumb,
and S2 is a set of inter-finger vectors. We add the last term to improve temporal smoothness.

Optimizing Equation (1) requires evaluating each link’s pose via forward kinematics from qt, and computing the
corresponding gradients. The nonlinear coupling between the underactuated DIP and PIP joints—expressed
by the constraint h(qPIP , qDIP ) = 0 complicates this Jacobian calculation. We address it by applying the
chain rule: first compute ∂qDIP

∂qPIP
from the constraint h, then incorporate this term into the PIP column of the

overall Jacobian, thus capturing the DIP–PIP dependency.

3.4 Robotic Arm Teleoperation

Meta Quest headset captures its controller’s transform relative to its start pose, which are mapped as pose
references for the FR3 end-effector. Human wrist pose mapping is formulated as a constrained optimization
problem (Equation 2) that enforces joint limits, generates smooth motion and natural configurations. The VR
teleoperation loop runs at 50 Hz, while the FR3 arm tracks the optimized motions with a 1 kHz joint-impedance
controller.

min
q̇

∥Jeq̇ − λ∆x∥2w0
+ ∥Jaq̇ −∆α∥2w1

+ ∥q̇∥2w2
+ ∥q̇ − q̇t−1∥2w3

s.t. fm ≤ q̇ ≤ fM

(2)

where Je and ∆x represent the tool frame Jacobian and relative transforms of the human wrist poses, λ is the
scaling factor for compensating the workspace difference between human and robotic arm, Ja and ∆α are the
arm angle Jacobian and deviation from vertical reference plane, w{i} is the weights of different tasks, and fm,
fM represent the constraints of joint position and velocity. We add the last term to avoid sudden acceleration
and improve motion smoothness.

4 Experimental Results

4.1 Experimental Setup

We first benchmark our retargeting pipeline against a modified DexPilot [18] implementation on thumb–index
and thumb–middle pinch motions. For each grasp, we quantify performance by measuring the inter-fingertip
distance between the primary digits and monitoring unintended collisions among the remaining fingers.

We then assess our teleoperation framework on a wide range of dexterous grasping and manipulation tasks -
spanning precision and power grasps, as well as non-prehensile manipulation, using a cluttered makeup table
populated with objects of diverse size, shape, mass, and surface friction. An operator equipped with a Manus
Meta Glove and Meta Quest controller, cleared the table in one continuous trial. To further evaluate the
retargeting pipeline, we introduced advanced in-hand manipulation scenarios. Demonstrations of these tasks
are provided in the accompanying video.

4.2 Retargeting Comparison Results

Figure 5 plots thumb-index and thumb-middle fingertip distances over five open-close pinch cycles, comparing
human reference trajectories (green) with robot motions from our retargeting method (red) and DexPilot
(blue). While both methods follow the operator’s pinch profile, our approach consistently achieves tighter
spacing in thumb–index experiments (Fig. 5a). By maintaining a tighter distance than the human reference, the
fingertips can exert forces into the object, thus improving grasp stability. In addition to optimizing inter-finger
distances to match human references, our retargeting reproduces human-like joint coordination—for example,
aligning opposing thumb and index fingertips into a parallel, gripper-like posture—which proved beneficial
for reliably retrieving slender items (e.g., lipsticks, brushes, tubes) during cluttered makeup-table cleanup.
Furthermore, our method reduced collisions between task-irrelevant fingers compared to DexPilot (Fig. 5b),
mitigating risks of mechanical wear during prolonged teleoperation sessions. These combined advantages
position our retargeting method as a robust solution for robotic grasping and manipulation.
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4.3 In-hand Manipulation Results

We evaluate three canonical in-hand manipulation primitives—(i) regrasping to translate objects between
fingers, (ii) sliding objects relative to the palm, and (iii) rotating objects or their components—and instantiate
them in four benchmark tasks: (1) regrasping a bottle from a precision to a power grasp; (2) multi-object
grasping; (3) lid unscrewing; and (4) push-to-open lids.
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(a) Thumb-index fingertip distances

0 500 1000 1500 20000.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Di
st

an
ce

 (m
)

Human
Dexpilot
Ours

(b) Thumb-middle fingertip distances

Figure 5 Comparison between our retargeting method and DexPilot, as quantified by the thumb–index and
thumb–middle fingertip distances.

Regrasping an object (shown in Figure 6a) involves switching contacts with the hand to achieve an optimal
grasp configuration. Typically, a thumb-index precision grasp is employed to retrieve the object from a surface,
followed by a transition to a power grasp that engages the remaining fingers and the palm to stabilize the
hold. This regrasping strategy leverages the accuracy of precision grasping for initial acquisition and the
stability of power grasping for secure manipulation, thereby enhancing grasp reliability while reducing the
physical and cognitive burden on the operator.

As illustrated in Figure 6b, the operator simultaneously grasps two objects by sequentially reconfiguring the
hand. First, the operator retrieves a cream tube from the table with the thumb–index precision grasp. To
free the thumb and index finger for a second grasp, the pinch is switched to a power grasp that engages the
middle, ring, and pinky fingers together with the palm. After the retrieval of the first object, the operator
rotates the hand palm-up to serve as a holder when pushing the tube along the palm until the index finger is
clear. The hand is then rotated palm-down, the arm is moved toward a second object on the table, and a
thumb-index precision grasp is executed to retrieve that object. This grasping strategy allows the operator to
hold multiple objects concurrently, demonstrating a previously unseen level of dexterity.

Lid opening represents a critical category of in-hand manipulation, as it requires manipulating the lid while
maintaining control over the main body of the object. We evaluated two distinct lid-opening strategies:
unscrewing via rotational motion and pushing using the thumb (see Figure 6c and 6d). In both cases, the
applied force or torque must be carefully regulated—sufficient to initiate lid movement, yet not so large as to
compromise the stability of the grasp on the main body.

4.4 Long-Horizon Teleoperation Results

We evaluated the system’s long-horizon teleoperation capabilities through a table organization task involving a
cluttered workspace populated with randomly arranged cosmetic and skincare items, including serum bottles,
cream tubes, lipsticks, brushes, and powder palettes. A multi-drawer makeup organizer was placed adjacent
to the clutter, requiring the robotic hand-arm system to retrieve objects and place these in the organizer,
additionally, insert items into a drawer. As illustrated in Figure 1 (bottom rows), the system successfully
managed diverse geometries and recovered from grasp slippage through real-time adjustments, demonstrating
robust performance in unstructured environments.

Drawer opening presents a significant challenge: the recessed finger pull at the bottom of the drawer is roughly
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the same size as a fingertip and lies near the tabletop, constrained by the arm’s workspace. To engage it, the
operator tilts the hand about 45° upward, flexes the index finger to insert the fingertip vertically into the
recess, and then retracts the arm to pull the drawer open. When pushing to close the drawer, it is found that
distributing the pushing force across multiple fingertips could even out the resulting torque which prevents
the entire organizer from tilting - a problem that arises when the force is applied with one fingertip.

(a) Regrasping via switching grasp type: from thumb-index precision pinch to power grasp

(b) Simultaneous grasping of two objects through shifting the first object along the palm

(c) Lid opening via pushing

(d) Lid opening via rotating

Figure 6 In-hand manipulation tasks.
We further demonstrate that non-prehensile manipulation primitives—pushing, pulling, and tilting—substantially
improve task efficiency when clearing a cluttered makeup table. For example, a red pocket mirror just 5 mm
thick is first dragged to the table’s edge to expose its narrow profile, then secured with a thumb–index pinch
grasp. To grasp a beige-colored palette, the hand pushes against its edge to flip it, thereby presenting a larger
surface for a stable grip. We also validate precision grasps on slender items: in one trial, the hand closes a
lipstick cap without disturbing its pose, underscoring the system’s next-level dexterity.

Our hand-arm teleoperation system delivers dexterity and flexibility, enabling fast object repositioning
and reliable re-grasping. In a nine-object sequence—including opening and closing a drawer—the operator
completed the task in under five minutes despite occasional slippage. With further operator training, we
anticipate even faster completion times, making our platform a robust solution for continuous data collection
in imitation-learning pipelines and the eventual automation of such tasks.
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5 Conclusion

We present a hand-arm teleoperation system featuring a 20-DoF linkage-driven robotic hand and a hand
motion retargeting method. The glove-based operation interface enables seamless hand-arm coordination
and the retargeting approach achieves precise human hand motion reproduction. The real-world grasping
and manipulation experiments’ results have demonstrated the potential of collecting high-fidelity data for
imitation learning. In the future, we would like to investigate bimanual teleoperation system and automating
the demonstrated dexterous skills.

6 Limitations

Human thumbs benefit from the saddle joint to achieve true oppositional with each of the rest four fingers.
This capability is not yet realized by the ByteDexter hand. While the current thumb–index pinch successfully
enables precision grasping across a range of objects, the absence of full opposition limits (1) the variety of
manipulable geometries (e.g., irregular or deformable items) and (2) the execution of seamless finger-gaiting
manipulation. Developing a thumb that has this oppositional function would expand the thumb’s workspace,
promote more balanced force distribution and optimal contact surfaces, and thereby enhance grasp stability
in complex in-hand manipulation tasks.

While the Meta Quest 3 delivers robust wrist-pose estimation under nominal conditions, occlusions remain a
key limitation: if the Quest controller is rotated out of the headset’s line of sight, tracking is lost—an issue
familiar to all vision-based systems. Although our mapping pipeline mitigates sudden jumps by holding the
arm’s last known command until the Quest controller reappears, long-term reliability will require sensor fusion
with complementary modalities (e.g., inertial measurement units or alternative wearable trackers) to maintain
seamless arm tracking even under full occlusion.

Long-term teleoperation reveals a critical limitation: human operators experience significant cognitive fatigue
when managing low-level grasp stabilization and high-level task planning simultaneously. While operators
excel at scene comprehension, grasp-type selection, and sequencing long-horizon actions, the constant need to
manually regulate contact forces and joint-level stability diverts attention from strategic decision-making. This
imbalance underscores the necessity for future integration of autonomous low-level grasping strategies—such
as closed-loop force modulation to offload repetitive stabilization efforts. By offloading these low-level subtasks
to the system, operators can concentrate on high-level decisions—such as what and how to grasp—thereby
reducing fatigue, improving task efficiency, and enhancing data quality during prolonged data-collection
sessions.
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Appendix

A Kinematic Analysis of the Finger

The kinematic structure of the finger is depicted in Figure 7. The rotary motions of three motors are

transmitted into linear motions at three spherical joints via lead screws, which are represented as prismatic

joints. As shown in Figure 7a, two prismatic-spherical-spherical (PSS) chains drive the 2-DoF motion of the

MCP joint, enabling abduction/adduction and flexion/extension. The PIP joint is actuated by a prismatic-

spherical-universal (PSU) chain combined with a crossed four-bar linkage, and the DIP joint is coupled to the

PIP joint through an additional crossed four-bar linkage.

(a) (b)

Figure 7 Kinematic analysis of the ByteDexter finger. (a) Kinematic chains of MCP, PIP and DIP. (b) The kinematic
structure of the finger.
Adapted from Kim et al., Nature Communications (2021) https://doi.org/10.1038/s41467-021-27261-0, licensed
under CC BY 4.0.

In the following sections, we analyze the kinematics of these mechanisms, including the two PSS chains of the

MCP joint, the PSU chain and four-bar linkage of the PIP joint, and the four-bar linkage of the DIP joint.

We define a global coordinate frame, O − xyz where the origin O is the projection of the MCP joint onto the

plane formed by the endpoints of the three P joints. Notably, we represent the transformation of frame B

relative to frame A as (RA
B ,p

A
B), where RA

B is the rotation matrix that describes the orientation of frame B

with respect to frame A, and pA
B is the position vector from the origin of frame A to the origin of frame B,

expressed in frame A.
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A.1 MCP Kinematics

Two PSS-Chains for the 2-DoF Motion At the MCP joint, two rotations (q1, q2) enable abduction/adduction

and flexion/extension motions (see Figure 7b-a). The relationship between q and d is denoted as f(q,d) = 0,

where q = [q1, q2]
T , d = [d1, d2]

T , and f = [f1, f2]
T . f is derived as follows:

RO
Pmcp

= Ry(q1)Rz(q2),

pO
B1

= pO
Pmcp

+RO
Pmcp

p
Pmcp

B1
, pO

B2
= pO

Pmcp
+RO

Pmcp
p
Pmcp

B2
,

pO
A1

= pO
A10

− [d1, 0, 0]
T , pO

A2
= pO

A20
− [d2, 0, 0]

T ,

||pO
B1

− pO
A1

|| = ||
−−−→
A1B1|| = l1, ||pO

B2
− pO

A2
|| = ||

−−−→
A2B2|| = l2,

(3)

where pO
A10

, pO
A20

, pO
B10

, and pO
B20

denote the initial position vectors of points A1, A2, B1, and B2, expressed

in frame O, respectively; d1 and d2 represent the linear displacements of the two prismatic joints; and Ry(·)

and Rz(·) are the rotation matrices about the y- and z-axes, respectively.

A.2 PIP Kinematics

The PIP joint is connected to joint P3 via a crossed four-bar linkage (P3–P4–P5–Ppip, see Figure 7b-c), while

joint P3 is actuated by the third motor through a PSU chain (P2–P1–P0, see Figure 7b-b).

Crossed Four-bar Linkage Frame P3 is defined at joint P3 by rotating an angle α about the z-axis of frame

Pmcp and translating by a position vector P
Pmcp

P3
from the origin of frame Pmcp. The relationship between

α and the joint variable q3 is expressed as g1(q3, α) = 0. We analyze the kinematics of the crossed four-bar

linkage (see Figure 7b-c), and g1 is derived as follows:

R
Pmcp

Ppip
= Rz(q3),

p
Pmcp

P5
= p

Pmcp

Ppip
+R

Pmcp

Ppip
p
Ppip

P5
,

R
Pmcp

P3
= Rz(α),

p
Pmcp

P4
= p

Pmcp

P3
+R

Pmcp

P3
pP3

P4
,

||pPmcp

P5
− p

Pmcp

P4
|| = ||

−−−→
P4P5||.

(4)

PSU Chain The PSU chain (see Figure 7b-b) is analyzed to derive the relationship between α and d3, expressed

as g2(α, d3) = 0:

p
Pmcp

P22
= p

Pmcp

P3
+R

Pmcp

P3
pP3

P22
,

pO
P22

= pO
Pmcp

+RO
Pmcp

p
Pmcp

P22
,

pO
P1

= pO
P10

− [d3, 0, 0]
T ,

||pO
P22

− pO
P1
|| = ∥

−−−→
P1P22∥2 = ∥

−−−→
P1P21∥2 + ∥

−−−−→
P21P22∥2 − 2∥

−−−→
P1P21∥∥

−−−−→
P21P22∥ cos(π − |q1|),

(5)

14



where pO
P10

is the initial position vector of point P1 expressed in frame O, and d3 represents the linear

displacements of the third prismatic joint.

Notably, we revise the representation of the universal joint at P2, originally shown in Figure 3 of [10], to

accurately reflect its actual implementation (see the coral-shaded depiction in Figure 7b-b). Additionally, we

approximate the angle q—defined between vectors
−−−→
P21P1 and

−−−−→
P22P21—by q1, and apply the Law of Cosines

to formulate the final equation.

A.3 DIP Kinematics

The kinematics of a crossed four-bar linkage (see Figure 7b-d) is analyzed to derive the relationship between

q3 and q4, expressed as h(q3, q4) = 0:

R
Ppip

Pdip
= Rz(q4),

p
Ppip

P7
= p

Ppip

Pdip
+R

Ppip

Pdip
p
Pdip

P7
,

p
Pmcp

P6
= p

Pmcp

Ppip
+R

Pmcp

Ppip
p
Ppip

P6
,

||pPpip

P6
− p

Ppip

P7
|| = ||

−−−→
P6P7||.

(6)
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